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Abstract E(X) = a+ bcosRrmx) (1)

A novel approach to the derivation of formulae o0 5 is mean signal leveb amplitude,w spatial
describing geometrical Modulation Transfer Funct|0nfrequency per unit distance and distance [2]. This is

(MTF) for sampled systems is presented. The formulae arg o 16 fall onto a sampling array which has an assumed
initially derived for the one dimensional case and describ

f i th t to samolin cpinear response. For the purposes of derivation it is also
periormance - extremes with respect 1o sampling  pitch,sqmed that the array and signal extends infinitely.

aperture an_d spatial frequency up to the Nyquist_limit. The An idealized sampling element centred at spatial
approach is then extended to two dimensions an osition u will collect incident light betweenu#(s/2).

performance with respect to array orientation evaluated. - -
The formulae were tested against a high qu(,jl”tyTherefore, sampling of a single element may be modeled by

L 2 straightforward integration of the signal between these
greyscale electronic stills camera (ECS). Predictions of thSOints Thus, the responsR(u,s) of a single element when
MTF were compared with measurements made using : ' '

modified edge gradient technique, sine waves and Isgamphng the above signal is:

12233[1]. The results show correlation and suggest the s

approach is valid within the constraints given. 2
Introduction R(u 9= L H3¥o0x @

a2

A considerable contribution to the MTF of a digital
device is made by the geometrical properties of the The modulation of the signal recorded by the array is
sampling array. This is defined by the dimensions of thelependent upon the values recorded for the maxima and
sampling elements and the frequency at which these occuninima of the input signal. This will be determined by the
The distance between sensitive elements is traditionallesponse of the element that is nearest the particular
denoted the sampling pitcp, and should not be confused maximum or minimum in question and will vary according
with the term resolution. The width of the sensitive area ofo its proximity. Establishing the possible variation in the

the element is denoted as the sampling apersiréjll- values of recorded maxima and minima will yield the
factor may be defined as the ratio of the aperture size to tlgeometrical response of the array and its performance
sampling pitch. envelope.

The introduction of geometrical sampling will cause a ~ The optimum recording of a maximurM,_ ., will
change in the MTF of a system with respect to the aboveccur when the centre of a sampling element coincides with
parameters. Also in the two dimensional case, the use dfiat maximum, Figure 1. For the signal defined above it
rectangular pixels and sampling matrices, causes a variationay be shown that maxima occurxain/w, wheren is an

with respect to orientation. arbitrary positive integer and therefore alwayx=. The
_ optimum value that may then be recorded for a given
Mathematical Development maximum of the defined signal is:

MOptimum = R(01 S) (3)
One Dimensional MTF _ . .
To develop a model which takes account of geometrical The most degrade_d recording of a maximum will be
properties it is initially assumed that the sampling array i§€Pendent upon the pitch of the sampling array and more

noiseless as is the exposing light. Consider the exposuE@eCiﬁca”y by the proximity of the nearest elerlnent. It may
distribution, E(x) given by: e shown that for a given sampling comb, an element centre

will always fall within p/2 of a given maximum. A
straightforward conclusion is that the furthest an element
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will be from a given maximum ip/2. Therefore, the most

Where MOptimurn> MDegraded> NDegraded> NOptimurn IS aSSUmed.
degraded valueyi

begradea FECOrded for a given maximum will Expanding and simplifying equations 8 and 9 yields:

be given by: bsin( )
p M (W) yax = T ams O
M Degraded = R%,S@ (4)
Similarly, the recording of signal minima will also M (@) yin = beos(mop) sin(wos) (11)
depend upon the pitch of the sampling array and the " arws

aperture of the elements. The average modulation recorded by the arké),, .

may be calculated as the mearM{t),,,, andM(a),,,. This
can be expanded to:

bcog E@Qsinh&s)
arnws

It should be noted that equations 10, 11 and 12 yield
absolute recorded modulation for a given input. It is normal
practice to normalize recorded modulation for a constant
input with respect to the zero frequency (DC) component to
produce the MTF of the system. This may be achieved by
omitting variablesa andb in the above equations.

The constraint relating to equations 8 and 9 limits the

Again, optimum recording will occur when the elementformulae to predicting the behaviour of undersampled
centre coincides with the minimum. It may be shown thagirrays up to the Nyquist frequency.plis defined as equal
minima occur atx=(1/2w)+(n/w) and therefore always at tos, thenM, .. =N, ..@NdNo . =M, ..at the Nyquist
x=(1/2¢). Thus, the optimum recorded value of a signalfrequency and the constraint does not hold. Figure 2 shows
minimum, N, will be: the calculated maximum, minimum and average MTFs for a

sampling comb with a pitch of one and sampling aperture

_ 1 one. This equates to a fill factor of 100%.
NOptimum - ) ' ®)

MOptimum M Degraded

Signal
Level

M () ave = (12)

7
NOptimum <

N
Degraded
Relative Distance

Figure 1. Parameters used in the construction of the model.

1<

o
. © 0.9 |
As before, the furthest an element centre may exist & gg |
from a given minimum ip/2. The most degraded recording E 0.7
of a minimumN,, ..., may then be calculated by: F 0.6 1
1 § 0.5
P 2 041
N = R§—+—, 6 = 1 --- Maximum AN
Degraded 2 2w ) ﬁ 0'2 — = Minimum AN
g 8'1 : — Average \\
Traditionally, the modulation of a sinusoidal signal, S o } } } } \\1‘
M(c), is given by: 0 0.1 0.2 0.3 0.4 0.5
Max — Mln Spatial Frequency (cycles per unit distance)
M(w)=—"—F @)
(@) Max+ Min

Figure 2. M(w),,,, » M(w),,, and M), predicted for an array

whereMax andMin denote the maxima and minima of with pitch and aperture of one unit distance.

the signal. Substituting the values above for the extremes of |t may be seen that the derived formulae agree with
the maxima and minima recorded by the array, it is founfiyquist as the predicted minimum MTF falls to zero at the
that the maximum and minimum possible modulationNyquist frequency of the above example. The Nyquist

M( ), aNAM(0d),,;,, Will be:

) -N .
_ Optimum Optimum
M ((A)) Max — M +N (8)
Optimum Optimum
_ M Degraded - N Degraded
M(@) win = N )
Degraded Degraded
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frequency is often misquoted as the cut-off frequency of the
system beyond which no response is possible. Nyquist's
theorem is a limiting condition for the correct reconstruction
of spatial frequencies and does not preclude a system
response for frequencies above it.

The variation between the predicted maximum and
minimum MTF is caused by the non-stationary nature of
sampled systems. The optimum MTF is yielded when the
sampling array is in phase with the target, conversely poor



1S& T's 1999 PICS Conference

performance results when the target is out of phase. Th&oincides with that maximum. It may be shown that, when
variation may be seen to increase with respect to spatig0O, E(x,y)has maxima at:
frequency. The variation may also be shown to be

exacerbated by the fill factor, Figure 3. The formulae X =

predict a larger performance envelope, the maximum MTF wcosP)
being increased. It may be considered an advantage as this

increases the value of the average MTF, however the Thus, a signal maximum will occur &(0,0) and the
potential for aliasing is much higher [3]. optimum recording, M., may be defined:

|\/IOptimum = R(O!O’ S) (16)

(15)

lA

5

2 0.9 A

2 081 Again it may be shown that a sampling element will fall
S 0.7 within p/2 of the maximum. The most degraded recording
5067 of a maximum, N, .., will then be given by:

B

= _ P

% gg 1 --- Maximum AN M Degraded — R% 10,5@ (17)

s — —Minimum >

g 0.1+ — Average \\

0 i i | The recording of minima occurs in a similar manner.

0 0.1 0.2 0.3 0.4 0.5 Wheny=0 it may be shown that minima &f(x,y)occur at:
Spatial Frequency (cycles per unit distance)
1 n

, . X= +
Figure 3.M(w), ., » M(w),,,, and M), . predicted for an array 2wcosP) w cosf )
with a low fill factor (p=1 and s=0.1 unit distance).

(18)

and that the first minimum occurs xat1/(2w cog6)).

Extension to Two Dimensions The opiimum recording of a minimum, N ., may be
. . defined:
As previously mentioned, the use of a rectangular
sampling element and matrix renders a system anisotropic M 1 0
[4]. To take account of this, the previous model may be NOptimum: RV’O’ sa (19)
expanded to two dimensions and terms for the orientation of wcos@ )

the test target added. In order to simplify derivation, the ) ,
array and exposing signal is again assumed noiseless, alsg |t may be shown that a sampling element will occur
the sampling pitch and aperture is set to be the same in ea¢fhin p/2 of the minimum and thus the most degraded

direction. recording of the minimum, I\, .., is defined by:
A .sinusqid, E(_x,y), exte.nding infinitely in two Op 1 0
dimensions with arbitrary rotation may be defin(?d. NDegraded — RBE + 7005056 )’O’SH (20)
E(X y) = a+ bcosRrmxcosf ¥ 2rwy sirf ))
(13) As for the one dimensional model, the maximum and

minimum MTFs may be shown to be given by equations 8

are \;thgir:ﬁ/gr;rlﬁgstggtazegrgﬁgggﬁ g??ﬁglgm::(ﬂé, in and 9 with similar constraints. Substituting the new values
P of recorded maxima and minima into the equations it is

radians. As for the original model, a sampling element Witi} .
. . ound:
apertures x s, centred at positiofu,v) may be considered as

integrating the signal over appropriate limits. The response, b.c(w)
R(u,v,s)of that element may be defined: M (w) Max — m (21)
bcos(mup cosf ))c @ )
R(uv, 9= XY &Yy (14) M () i = 22
(wu9=] J&xY () e e @)
2 2

where c(w)=2 csc(d) sin(rws cos@)) sin(rrws sin(6))

Using the same approach, variation in modulatiorand 0<@<774. For reasons as given previously for the one
recorded by the array is examined by considering the fate @fimensional model, the use of these formulae is restricted to
signal maxima and minima. As the sampling array extendgndersampled systems up to the Nyquist frequency. Again,
infinitely this is possible by observing a single row of normalized MTFs may be produced by omittangndb.
elements which is centered on the generated exposure at The fundamental influence of the orientation of the test
y=0. target may be shown by examining the change in MTF.

As previously stated, optimum recording of aFigure 4 shows that as the target is rotated both the
maximum will occur when the centre of a sampling elemengnaximum and minimum MTF increases, though by a much
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decreased amount in the case of the maximum MTF. Thappear that for a low fill factor there is a greater increase in
precise progression of the performance as the target MTF as the sinusoid is rotated, this is eliminated if the
rotated may be examined my plotting modulation versusriginal response of the sampling array at zero radians is

target angle for a single spatial frequency, Figure 5. considered. This may be achieved by plotting the increase in
L MTF for given angle as a ratio of the MTF with no rotation,
3 Figure 8.
@ 0.9
© i —
Sos s 1
5077 £ 09
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Figure 4. M@),,., and M@),,,, predicted for a sampling array with -9 0--0.1--0.2--- 0.3 --0.4 —0.5 cycles per unit distance
pitch and aperture of one unit distance in each direction, at 0 and
M4 radians. Figure 6. M@),,, plotted agains® for various spatial frequencies.
The sampling array has pitch and aperture of one unit distance in
5 0.95 T each direction.
7
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Figure 5. M@),,,, and M@),,,, plotted with respect to target Spatial Frequency (cycles per unit distance)

orinentation for a sampling array with pitch and aperture of one
unit distance in each direction for a spatial frequency of 0.25  Figure 7. Minimum predicted MTF for arrays with fill factors of
cycles per unit distance. 100% and 1% at orientations of O artfl radians.

The model predicts that interaction between the spatial
frequency imaged and the orientation exists, Figure 6. As
spatial frequency increases, the orientation has a greater 3.0
effect. This is illustrated by the increased variation in the 2.5 1
curves for higher spatial frequencies. For the DC
component, orientation is shown to have no influence
indicated by the constant value for the curve. This agrees 157
with intuition, as no variation in imaged density would be 1.0
expected if a uniform grey patch were rotated.

The interaction of spatial frequency and orientation is
important as it suggests a further cause of measurement
noise at high spatial frequencies. Slight mis-orientation of
test targets will cause increased deviation of the measured
MTF from the true value at high spatial frequencies. _ ) _
Furthermore, this deviation will be positive and compound Figure 8. Increase in MTF plotted as a ratio of the MTF at 0
the bias introduced by random noise [5]. radians for arrays with fill factors of 100% and 1%.

Fill factor is predicted to have little interaction with the As may be seen the ratio of the increase in the MTF
orientation of the test signal. Figure 7 shows the minimunjyjth respect to that when it is not rotated is virtually

MTF for sampling arrays with fill factors of 100% and 1% jgentical, indicating that there is no or little interaction
at orientations of 0 ant/4 radians. Whilst initially it may petween fill factor and orientation.

--- 100% Fill Factor
— 1% Fill Factor

2.0 ~

Ratio

0.5 +

0.0 } } } }
0 0.1 0.2 0.3 0.4
Spatial Frequency (cycles per unit distance)
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Experimental Confirmation and Discussion order to align the orientation of the target with the array.
Images were made, using the procedure described above,
To confirm the above approach to the calculation ofranslating the target in fén intervals with the micro-
geometrical MTF, a modified edge technique, the IS(positioners. This corresponded to the image of the edge
12233 standard and a sine wave method were used #&mvancing 0.8%m across the CCD. The images were then
determine the minimum, maximum and average MTFs oflownloaded and corrected as above. A mean edge profile
the Kodak DCS 420m (monochrome) in combination with avas extracted from each by averaging columns in order to
Nikon AF 28mm f2.8 D lens. reduce noise. MTFs were calculated in the usual manner [7]
Test targets were mounted on a 3m optical bench witand the maximum and minimum response selected. In
an arrangement of micro-positioners to adjust translatioaddition all responses were averaged to produce a mean.
and rotation in the plane of the target. The stated accuracy To calculate the SFR of the device, the above target
of the micrometers was2um in linear translation and5  was rotated approximately’ mnd an exposure made. This
minutes of arc in rotation. Two Photoflood 200W tungsterimage and the previously calculated transfer function were
lamps provided even illumination. The DCS 420 was rigidlyused as the input image a@pto-Electronic Conversion
mounted on the bench so that the optical axis of the cameFainction for the 1ISO 12233 plug-in. All results were
was orthogonal to the plane of the target. The distanceorrected for the component of lens MTF and compared to
between the test target and camera was used to calculate these predicted.
magnification of the arrangement as31%”. Figure 9, shows a reasonable degree of correlation
After positioning and rotating the target as required, thdetween the predicted and determined values. The mean
camera’s autofocus system was used to focus. Automatedeasured MTF however corresponds bettdvifa), . than
focusing was preferred over manual due to its increasedbes the SFR. Further work is needed to explain this result.
consistency. The lens was set at an aperture of f5.6 and used Correlation of the results might be improved as it is
in combination with the Tiffen infra-red absorbing filter possible that the translation of the edge image was not of
provided with the camera. The speed setting of the camesgalfficient subtlety to invoke the maximum and minimum
was adjusted to ISO 200 and the correct exposureesponse of the array.
determined using the camera meter in spot mode with a
Kodak R-27 greycard placed in the plane of the target.
After making exposures as desired, images were
downloaded to an IBM compatible PC, via the Adobe
Photoshop plug-in provided, as 8 bit data. Relevant data

0.8

~
~

Normalised Modulation Transfer

. . 0.6 1 --- Predicted Maximum
was extracted and then converted into effective exposure — - Predicted Minimum
units [6] using the transfer function of the device 0.4+ ° Measured Maximum o
. . L s Measured Minimum g af
determined with a Kodak Q-13 greyscale under similar ——Measured SFR " e
circumstances 0.2 + — Predicted Average N
' . x Measured Average Sy
The MTF of the system was calculated using each 0 ‘ ‘ ‘ ‘ e

image according to the details given later. The lens MTF 0 10 20 30 40 50
was investigated using an Ealing Optics EROS 200. This
component was removed from the system MTF in the usual
manner to yield that of the charged coupled device (CCD). _ ) _

The manual accompanying the DCS420 specifies thé&igure 9. Comparison (_)f the predicted performance envelope with
sampling pitch of the CCD to beudh. The fill factor and that determined for the Kodak DCS420m.

thus the aperture of the elements is not specified, although a |, this work no account has been taken for the effect of
typical value is 90%. Assuming square elements this valugn optical pre-filter or system electronics. As these effects

Spatial Frequency (cycles per mm)

was used to determine the aperture size agif53 increase for a given system, the MTF will depart from the
) _ geometrical component. Further inaccuracies may be
One Dimensional MTF contained in the predicted MTFs due to the use of an

To determine maximum and minimum MTFs an edgesstimated value of aperture and measurement of the lens
target was produced using a Hewlett Packard 6MP lasgjTE.

printer. To avoid effects caused by half-toning the edge was
arranged in the direction of printing and designed to have ®y0 Dimensional MTE
transition from the maximum possible density to page Confirmation of the two dimensional case is
white. A number of measurements were made along thgnallenging for a number of reasons. To validate the results
length of the edge to ensure a consistent density. The usejpfis necessary to measure slight changes in the recorded
a laser printed edge, whilst not ideal, is possible because gfodulation of single frequencies close to the Nyquist limit
the low magnification of the system which ensures theyf the system with respect to orientation. This is because the
frequency response of the target is constant over the desirggtmulae predict the largest variation in values at this point
range. This may be confirmed easily using reflectiorand present the best opportunity to evaluate this
microdensitometry. - ) i henomenon. It is therefore important that the noise
~ The target was positioned in the centre of the field Othreshold and the implementation of the measurement
view of the camera. Exposures were made and examined jRethodology in two dimensions be carefully considered.
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Methods which involve the simulation of white noise 2+
yield two dimensional responses with relative ease [8]. It is 1.8 +
not possible, however, to determine performance extremes 1.6 +
as the effects of the non-stationary nature of the array are 14+
usually integrated over the area of the target. Furthermore, 12+
they generally suffer from noise [8]. Edge gradient
techniques are difficult to implement at arbitrary angles due
to the discrete nature of the sampling array. Though labour

0.8 +
0.6 T
0.4 +

--- Predicted Minimum MTF
— Predicted Maximum MTF
—— Measured Minimum MTF

Normalised Modulation Transfer
[

intensive, the use of a sinusoidal test pattern is o2 L __ Measured Maximum MTE
advantageous. The effect of orientation may easily be 0 | | | |
examined for a single spatial frequency with low 0 0.2 0.4 0.6 0.8

measurement noise. Also, the performance envelope of the
system may be evaluated as the effects of aliasing and
alignment of the target and array can be distinguished.
Exposures of a Sine Patterns [9] M13-60 sinusoidal )
target were made as before af Iftervals between®cand These results d_o not fl_JIIy validate th_e formu_lae. Many
40° and also at 45 After downloading and correction, othe_r aspects require testing, such as interaction between
maxima and minima were extracted from a single sinusoid&Patial frequency and orientation. Further work is necessary
patch (0.75 cycles per mm on target) for each image. TH® refine measurement techniques and confirm results.
variation in the maxima and minima was found and used to
calculate maximum and minimum recorded modulation.
These values were then corrected for the effects of the lens ) )
and input modulation of the sinusoid in the usual manner Formulae to predict the geometrical MTF of sampled

and compared to those predicted by the formulae, Figure 18ystems have been presented and an attempt made to
experimentally validate them. The one dimensional results

Target Angle (Radians)

Figure 11. Normalised results with respect to orientation.

Conclusion

0.8 shown good correlation. Some trends predicted by the two
0.7 + - - Predicted Minimum dimensional formulae have been confirmed but further work
8 06+ — Predicted Maximum is necessary to improve measurement techniques in order to
4] ——Measured Minimum .
8 051 ——Measured Maximum fully validate results.
'_
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Figure 10. Recorded modulation with respect to orientation

Initially the results appear to have a poor correlation
The necessity, however, of measuring the effects close Etj
the Nyquist frequency produces a high chance of systematic
errors. Error in the MTF of the lens and inaccurate focusing
could combine to produce a consistent deviation.”
Considering this, it is possible to normalize the curves wit%
respect to the response of the system when the target is not
rotated in order to remove any deviation, Figure 11.

After normalization, the results have better correlation.4
Both the minimum and maximum MTFs follow the trend ™
suggested by the formulae. Though containing measuremeé\t
error these results confirm that the minimum MTF is>
affected more than the maximum and that the MTFG'
increases as the target is rotated. Measurement error is not
only caused by random fluctuations but also the finite siz
of the test target. To produce all possible recorded extrem%s
of maxima and minima requires a large number of input”

cycles and thus a large test target area. 9
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